Spark中的UDAF简介及其Stage
udaf操作会分为两个stage:
-
- partial_merge: 本地进行merge,是一种窄依赖。tasks数量取决于上一步的partitions。
-
- merge:不同partition的数据进行merge,是一种宽依赖,需要shuffle,因此tasks数量取决于设置的值spark.default.parallelism
class MyAvg extends UserDefinedAggregateFunction {
// Input type
def inputSchema: org.apache.spark.sql.types.StructType = StructType(StructField("value", DoubleType) :: Nil)
// This is the internal fields you keep for computing your aggregate. 计算缓存
def bufferSchema: StructType = StructType( StructField("count", LongType) :: StructField("sum", DoubleType) :: Nil
)
// Return type
def dataType: DataType = DoubleType
//幂等性
def deterministic: Boolean = true
//初始值
def initialize(buffer: MutableAggregationBuffer): Unit = { buffer(0) = 0L //计数count
buffer(1) = 0.0 //求和sum
}
//根据给定输入,更新缓存buffer
def update(buffer: MutableAggregationBuffer,input: Row): Unit = {
buffer(0) = buffer.getAs[Long](0) + 1
buffer(1) = buffer.getAs[Double](1) + input.getAs[Double](0)
}
//合并merge两个buffer:包括计算partial和合并partial
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = { buffer1(0) = buffer1.getAs[Long](0) + buffer2.getAs[Long](0) buffer1(1) = buffer1.getAs[Double](1) + buffer2.getAs[Double](1)
}
//最终输出值
def evaluate(buffer: Row): Any = { buffer.getDouble(1) / buffer.getLong(0)
}
}
使用:
val df = spark.sql("select user, num from table")
df.groupBy("user")
.agg(MyAvg(col("num")).as("avg"))